This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppvalbr | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = { x | ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. dom R | ( R " { x } ) =/= { Z } } = { x | ( x e. dom R /\ ( R " { x } ) =/= { Z } ) } |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | eldm | |- ( x e. dom R <-> E. y x R y ) |
| 4 | imasng | |- ( x e. _V -> ( R " { x } ) = { y | x R y } ) |
|
| 5 | 4 | elv | |- ( R " { x } ) = { y | x R y } |
| 6 | 5 | neeq1i | |- ( ( R " { x } ) =/= { Z } <-> { y | x R y } =/= { Z } ) |
| 7 | df-sn | |- { Z } = { y | y = Z } |
|
| 8 | 7 | neeq2i | |- ( { y | x R y } =/= { Z } <-> { y | x R y } =/= { y | y = Z } ) |
| 9 | nabbib | |- ( { y | x R y } =/= { y | y = Z } <-> E. y ( x R y <-> -. y = Z ) ) |
|
| 10 | 6 8 9 | 3bitri | |- ( ( R " { x } ) =/= { Z } <-> E. y ( x R y <-> -. y = Z ) ) |
| 11 | 3 10 | anbi12i | |- ( ( x e. dom R /\ ( R " { x } ) =/= { Z } ) <-> ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) ) |
| 12 | 11 | abbii | |- { x | ( x e. dom R /\ ( R " { x } ) =/= { Z } ) } = { x | ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) } |
| 13 | 1 12 | eqtr2i | |- { x | ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) } = { x e. dom R | ( R " { x } ) =/= { Z } } |
| 14 | 13 | a1i | |- ( ( R e. V /\ Z e. W ) -> { x | ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) } = { x e. dom R | ( R " { x } ) =/= { Z } } ) |
| 15 | df-ne | |- ( y =/= Z <-> -. y = Z ) |
|
| 16 | 15 | bibi2i | |- ( ( x R y <-> y =/= Z ) <-> ( x R y <-> -. y = Z ) ) |
| 17 | 16 | exbii | |- ( E. y ( x R y <-> y =/= Z ) <-> E. y ( x R y <-> -. y = Z ) ) |
| 18 | 17 | anbi2i | |- ( ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) <-> ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) ) |
| 19 | 18 | abbii | |- { x | ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) } = { x | ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) } |
| 20 | 19 | a1i | |- ( ( R e. V /\ Z e. W ) -> { x | ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) } = { x | ( E. y x R y /\ E. y ( x R y <-> -. y = Z ) ) } ) |
| 21 | suppval | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = { x e. dom R | ( R " { x } ) =/= { Z } } ) |
|
| 22 | 14 20 21 | 3eqtr4rd | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = { x | ( E. y x R y /\ E. y ( x R y <-> y =/= Z ) ) } ) |