This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppeq | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fex | |- ( ( F : I --> S /\ I e. V ) -> F e. _V ) |
|
| 2 | 1 | expcom | |- ( I e. V -> ( F : I --> S -> F e. _V ) ) |
| 3 | 2 | adantr | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> F e. _V ) ) |
| 4 | 3 | imp | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> F e. _V ) |
| 5 | simplr | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> Z e. W ) |
|
| 6 | suppimacnv | |- ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 8 | ffun | |- ( F : I --> S -> Fun F ) |
|
| 9 | inpreima | |- ( Fun F -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
| 11 | cnvimass | |- ( `' F " ( _V \ { Z } ) ) C_ dom F |
|
| 12 | fdm | |- ( F : I --> S -> dom F = I ) |
|
| 13 | fimacnv | |- ( F : I --> S -> ( `' F " S ) = I ) |
|
| 14 | 12 13 | eqtr4d | |- ( F : I --> S -> dom F = ( `' F " S ) ) |
| 15 | 11 14 | sseqtrid | |- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) ) |
| 16 | sseqin2 | |- ( ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) <-> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 17 | 15 16 | sylib | |- ( F : I --> S -> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
| 18 | 10 17 | eqtrd | |- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
| 19 | invdif | |- ( S i^i ( _V \ { Z } ) ) = ( S \ { Z } ) |
|
| 20 | 19 | imaeq2i | |- ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( S \ { Z } ) ) |
| 21 | 18 20 | eqtr3di | |- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) ) |
| 22 | 21 | adantl | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) ) |
| 23 | 7 22 | eqtrd | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) |
| 24 | 23 | ex | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |