This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | |- ( ph -> R Or A ) |
|
| supcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
||
| Assertion | supnub | |- ( ph -> ( ( C e. A /\ A. z e. B -. C R z ) -> -. C R sup ( B , A , R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | |- ( ph -> R Or A ) |
|
| 2 | supcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
|
| 3 | 1 2 | suplub | |- ( ph -> ( ( C e. A /\ C R sup ( B , A , R ) ) -> E. z e. B C R z ) ) |
| 4 | 3 | expdimp | |- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) -> E. z e. B C R z ) ) |
| 5 | dfrex2 | |- ( E. z e. B C R z <-> -. A. z e. B -. C R z ) |
|
| 6 | 4 5 | imbitrdi | |- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) -> -. A. z e. B -. C R z ) ) |
| 7 | 6 | con2d | |- ( ( ph /\ C e. A ) -> ( A. z e. B -. C R z -> -. C R sup ( B , A , R ) ) ) |
| 8 | 7 | expimpd | |- ( ph -> ( ( C e. A /\ A. z e. B -. C R z ) -> -. C R sup ( B , A , R ) ) ) |