This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, if Y is a member of S , ( S \ { Y } ) and S have the same closure if and only if Y is in the closure of ( S \ { Y } ) . Used in the proof of mrieqvd and mrieqv2d . Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrieqvlemd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| mrieqvlemd.2 | |- N = ( mrCls ` A ) |
||
| mrieqvlemd.3 | |- ( ph -> S C_ X ) |
||
| mrieqvlemd.4 | |- ( ph -> Y e. S ) |
||
| Assertion | mrieqvlemd | |- ( ph -> ( Y e. ( N ` ( S \ { Y } ) ) <-> ( N ` ( S \ { Y } ) ) = ( N ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrieqvlemd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 2 | mrieqvlemd.2 | |- N = ( mrCls ` A ) |
|
| 3 | mrieqvlemd.3 | |- ( ph -> S C_ X ) |
|
| 4 | mrieqvlemd.4 | |- ( ph -> Y e. S ) |
|
| 5 | 1 | adantr | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> A e. ( Moore ` X ) ) |
| 6 | undif1 | |- ( ( S \ { Y } ) u. { Y } ) = ( S u. { Y } ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> S C_ X ) |
| 8 | 7 | ssdifssd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( S \ { Y } ) C_ X ) |
| 9 | 5 2 8 | mrcssidd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( S \ { Y } ) C_ ( N ` ( S \ { Y } ) ) ) |
| 10 | simpr | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> Y e. ( N ` ( S \ { Y } ) ) ) |
|
| 11 | 10 | snssd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> { Y } C_ ( N ` ( S \ { Y } ) ) ) |
| 12 | 9 11 | unssd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( ( S \ { Y } ) u. { Y } ) C_ ( N ` ( S \ { Y } ) ) ) |
| 13 | 6 12 | eqsstrrid | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( S u. { Y } ) C_ ( N ` ( S \ { Y } ) ) ) |
| 14 | 13 | unssad | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> S C_ ( N ` ( S \ { Y } ) ) ) |
| 15 | difssd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( S \ { Y } ) C_ S ) |
|
| 16 | 5 2 14 15 | mressmrcd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( N ` S ) = ( N ` ( S \ { Y } ) ) ) |
| 17 | 16 | eqcomd | |- ( ( ph /\ Y e. ( N ` ( S \ { Y } ) ) ) -> ( N ` ( S \ { Y } ) ) = ( N ` S ) ) |
| 18 | 1 2 3 | mrcssidd | |- ( ph -> S C_ ( N ` S ) ) |
| 19 | 18 4 | sseldd | |- ( ph -> Y e. ( N ` S ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( N ` ( S \ { Y } ) ) = ( N ` S ) ) -> Y e. ( N ` S ) ) |
| 21 | simpr | |- ( ( ph /\ ( N ` ( S \ { Y } ) ) = ( N ` S ) ) -> ( N ` ( S \ { Y } ) ) = ( N ` S ) ) |
|
| 22 | 20 21 | eleqtrrd | |- ( ( ph /\ ( N ` ( S \ { Y } ) ) = ( N ` S ) ) -> Y e. ( N ` ( S \ { Y } ) ) ) |
| 23 | 17 22 | impbida | |- ( ph -> ( Y e. ( N ` ( S \ { Y } ) ) <-> ( N ` ( S \ { Y } ) ) = ( N ` S ) ) ) |