This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than". ( chnlei analog.) (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssnle.p | |- .(+) = ( LSSum ` G ) |
|
| lssnle.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lssnle.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| Assertion | lssnle | |- ( ph -> ( -. U C_ T <-> T C. ( T .(+) U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssnle.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lssnle.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 3 | lssnle.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 4 | 1 | lsmss2b | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T <-> ( T .(+) U ) = T ) ) |
| 5 | 2 3 4 | syl2anc | |- ( ph -> ( U C_ T <-> ( T .(+) U ) = T ) ) |
| 6 | eqcom | |- ( ( T .(+) U ) = T <-> T = ( T .(+) U ) ) |
|
| 7 | 5 6 | bitrdi | |- ( ph -> ( U C_ T <-> T = ( T .(+) U ) ) ) |
| 8 | 7 | necon3bbid | |- ( ph -> ( -. U C_ T <-> T =/= ( T .(+) U ) ) ) |
| 9 | 1 | lsmub1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) ) |
| 10 | 2 3 9 | syl2anc | |- ( ph -> T C_ ( T .(+) U ) ) |
| 11 | df-pss | |- ( T C. ( T .(+) U ) <-> ( T C_ ( T .(+) U ) /\ T =/= ( T .(+) U ) ) ) |
|
| 12 | 11 | baib | |- ( T C_ ( T .(+) U ) -> ( T C. ( T .(+) U ) <-> T =/= ( T .(+) U ) ) ) |
| 13 | 10 12 | syl | |- ( ph -> ( T C. ( T .(+) U ) <-> T =/= ( T .(+) U ) ) ) |
| 14 | 8 13 | bitr4d | |- ( ph -> ( -. U C_ T <-> T C. ( T .(+) U ) ) ) |