This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gimcnv | |- ( F e. ( S GrpIso T ) -> `' F e. ( T GrpIso S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | 1 2 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 4 | frel | |- ( F : ( Base ` S ) --> ( Base ` T ) -> Rel F ) |
|
| 5 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 6 | 4 5 | sylib | |- ( F : ( Base ` S ) --> ( Base ` T ) -> `' `' F = F ) |
| 7 | 3 6 | syl | |- ( F e. ( S GrpHom T ) -> `' `' F = F ) |
| 8 | id | |- ( F e. ( S GrpHom T ) -> F e. ( S GrpHom T ) ) |
|
| 9 | 7 8 | eqeltrd | |- ( F e. ( S GrpHom T ) -> `' `' F e. ( S GrpHom T ) ) |
| 10 | 9 | anim1ci | |- ( ( F e. ( S GrpHom T ) /\ `' F e. ( T GrpHom S ) ) -> ( `' F e. ( T GrpHom S ) /\ `' `' F e. ( S GrpHom T ) ) ) |
| 11 | isgim2 | |- ( F e. ( S GrpIso T ) <-> ( F e. ( S GrpHom T ) /\ `' F e. ( T GrpHom S ) ) ) |
|
| 12 | isgim2 | |- ( `' F e. ( T GrpIso S ) <-> ( `' F e. ( T GrpHom S ) /\ `' `' F e. ( S GrpHom T ) ) ) |
|
| 13 | 10 11 12 | 3imtr4i | |- ( F e. ( S GrpIso T ) -> `' F e. ( T GrpIso S ) ) |