This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lelttrdi.r | |- ( ph -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
|
| lelttrdi.l | |- ( ph -> B <_ C ) |
||
| Assertion | lelttrdi | |- ( ph -> ( A < B -> A < C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lelttrdi.r | |- ( ph -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
|
| 2 | lelttrdi.l | |- ( ph -> B <_ C ) |
|
| 3 | 1 | simp1d | |- ( ph -> A e. RR ) |
| 4 | 3 | adantr | |- ( ( ph /\ A < B ) -> A e. RR ) |
| 5 | 1 | simp2d | |- ( ph -> B e. RR ) |
| 6 | 5 | adantr | |- ( ( ph /\ A < B ) -> B e. RR ) |
| 7 | 1 | simp3d | |- ( ph -> C e. RR ) |
| 8 | 7 | adantr | |- ( ( ph /\ A < B ) -> C e. RR ) |
| 9 | simpr | |- ( ( ph /\ A < B ) -> A < B ) |
|
| 10 | 2 | adantr | |- ( ( ph /\ A < B ) -> B <_ C ) |
| 11 | 4 6 8 9 10 | ltletrd | |- ( ( ph /\ A < B ) -> A < C ) |
| 12 | 11 | ex | |- ( ph -> ( A < B -> A < C ) ) |