This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subcn2 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( C e. CC -> -u C e. CC ) |
|
| 2 | addcn2 | |- ( ( A e. RR+ /\ B e. CC /\ -u C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) ) |
| 4 | negcl | |- ( v e. CC -> -u v e. CC ) |
|
| 5 | fvoveq1 | |- ( w = -u v -> ( abs ` ( w - -u C ) ) = ( abs ` ( -u v - -u C ) ) ) |
|
| 6 | 5 | breq1d | |- ( w = -u v -> ( ( abs ` ( w - -u C ) ) < z <-> ( abs ` ( -u v - -u C ) ) < z ) ) |
| 7 | 6 | anbi2d | |- ( w = -u v -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) ) ) |
| 8 | oveq2 | |- ( w = -u v -> ( u + w ) = ( u + -u v ) ) |
|
| 9 | 8 | fvoveq1d | |- ( w = -u v -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) = ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) ) |
| 10 | 9 | breq1d | |- ( w = -u v -> ( ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A <-> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) |
| 11 | 7 10 | imbi12d | |- ( w = -u v -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) ) |
| 12 | 11 | rspcv | |- ( -u v e. CC -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) ) |
| 13 | 4 12 | syl | |- ( v e. CC -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) ) |
| 14 | 13 | adantl | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) ) |
| 15 | simpr | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> v e. CC ) |
|
| 16 | simpll3 | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> C e. CC ) |
|
| 17 | 15 16 | neg2subd | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( -u v - -u C ) = ( C - v ) ) |
| 18 | 17 | fveq2d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( -u v - -u C ) ) = ( abs ` ( C - v ) ) ) |
| 19 | 16 15 | abssubd | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( C - v ) ) = ( abs ` ( v - C ) ) ) |
| 20 | 18 19 | eqtrd | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( -u v - -u C ) ) = ( abs ` ( v - C ) ) ) |
| 21 | 20 | breq1d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( abs ` ( -u v - -u C ) ) < z <-> ( abs ` ( v - C ) ) < z ) ) |
| 22 | 21 | anbi2d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) ) ) |
| 23 | negsub | |- ( ( u e. CC /\ v e. CC ) -> ( u + -u v ) = ( u - v ) ) |
|
| 24 | 23 | adantll | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( u + -u v ) = ( u - v ) ) |
| 25 | simpll2 | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> B e. CC ) |
|
| 26 | 25 16 | negsubd | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( B + -u C ) = ( B - C ) ) |
| 27 | 24 26 | oveq12d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( u + -u v ) - ( B + -u C ) ) = ( ( u - v ) - ( B - C ) ) ) |
| 28 | 27 | fveq2d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) = ( abs ` ( ( u - v ) - ( B - C ) ) ) ) |
| 29 | 28 | breq1d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A <-> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) |
| 30 | 22 29 | imbi12d | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) ) |
| 31 | 14 30 | sylibd | |- ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) ) |
| 32 | 31 | ralrimdva | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) ) |
| 33 | 32 | ralimdva | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) ) |
| 34 | 33 | reximdv | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) ) |
| 35 | 34 | reximdv | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( E. y e. RR+ E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) ) |
| 36 | 3 35 | mpd | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) |