This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcn for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcn2 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rphalfcl | |- ( A e. RR+ -> ( A / 2 ) e. RR+ ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( A / 2 ) e. RR+ ) |
| 3 | simprl | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> u e. CC ) |
|
| 4 | simpl2 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> B e. CC ) |
|
| 5 | simprr | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> v e. CC ) |
|
| 6 | 3 4 5 | pnpcan2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( u + v ) - ( B + v ) ) = ( u - B ) ) |
| 7 | 6 | fveq2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( u + v ) - ( B + v ) ) ) = ( abs ` ( u - B ) ) ) |
| 8 | 7 | breq1d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) <-> ( abs ` ( u - B ) ) < ( A / 2 ) ) ) |
| 9 | simpl3 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> C e. CC ) |
|
| 10 | 4 5 9 | pnpcand | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( B + v ) - ( B + C ) ) = ( v - C ) ) |
| 11 | 10 | fveq2d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B + v ) - ( B + C ) ) ) = ( abs ` ( v - C ) ) ) |
| 12 | 11 | breq1d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) <-> ( abs ` ( v - C ) ) < ( A / 2 ) ) ) |
| 13 | 8 12 | anbi12d | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) ) <-> ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) ) ) |
| 14 | addcl | |- ( ( u e. CC /\ v e. CC ) -> ( u + v ) e. CC ) |
|
| 15 | 14 | adantl | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( u + v ) e. CC ) |
| 16 | 4 9 | addcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B + C ) e. CC ) |
| 17 | 4 5 | addcld | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B + v ) e. CC ) |
| 18 | simpl1 | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR+ ) |
|
| 19 | 18 | rpred | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR ) |
| 20 | abs3lem | |- ( ( ( ( u + v ) e. CC /\ ( B + C ) e. CC ) /\ ( ( B + v ) e. CC /\ A e. RR ) ) -> ( ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
|
| 21 | 15 16 17 19 20 | syl22anc | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
| 22 | 13 21 | sylbird | |- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
| 23 | 22 | ralrimivva | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
| 24 | breq2 | |- ( y = ( A / 2 ) -> ( ( abs ` ( u - B ) ) < y <-> ( abs ` ( u - B ) ) < ( A / 2 ) ) ) |
|
| 25 | 24 | anbi1d | |- ( y = ( A / 2 ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) ) ) |
| 26 | 25 | imbi1d | |- ( y = ( A / 2 ) -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
| 27 | 26 | 2ralbidv | |- ( y = ( A / 2 ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
| 28 | breq2 | |- ( z = ( A / 2 ) -> ( ( abs ` ( v - C ) ) < z <-> ( abs ` ( v - C ) ) < ( A / 2 ) ) ) |
|
| 29 | 28 | anbi2d | |- ( z = ( A / 2 ) -> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) ) ) |
| 30 | 29 | imbi1d | |- ( z = ( A / 2 ) -> ( ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
| 31 | 30 | 2ralbidv | |- ( z = ( A / 2 ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
| 32 | 27 31 | rspc2ev | |- ( ( ( A / 2 ) e. RR+ /\ ( A / 2 ) e. RR+ /\ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
| 33 | 2 2 23 32 | syl3anc | |- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |