This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of subtraction, which is the (unique) element x such that B + x = A . (Contributed by NM, 4-Aug-2007) (Revised by Mario Carneiro, 2-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subval | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( iota_ x e. CC ( B + x ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = A -> ( ( z + x ) = y <-> ( z + x ) = A ) ) |
|
| 2 | 1 | riotabidv | |- ( y = A -> ( iota_ x e. CC ( z + x ) = y ) = ( iota_ x e. CC ( z + x ) = A ) ) |
| 3 | oveq1 | |- ( z = B -> ( z + x ) = ( B + x ) ) |
|
| 4 | 3 | eqeq1d | |- ( z = B -> ( ( z + x ) = A <-> ( B + x ) = A ) ) |
| 5 | 4 | riotabidv | |- ( z = B -> ( iota_ x e. CC ( z + x ) = A ) = ( iota_ x e. CC ( B + x ) = A ) ) |
| 6 | df-sub | |- - = ( y e. CC , z e. CC |-> ( iota_ x e. CC ( z + x ) = y ) ) |
|
| 7 | riotaex | |- ( iota_ x e. CC ( B + x ) = A ) e. _V |
|
| 8 | 2 5 6 7 | ovmpo | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( iota_ x e. CC ( B + x ) = A ) ) |