This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is a finer topology than J , then the subspace topologies induced by A maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrest | |- ( ( K e. V /\ J C_ K ) -> ( J |`t A ) C_ ( K |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> x e. ( J |`t A ) ) |
|
| 2 | ssrexv | |- ( J C_ K -> ( E. y e. J x = ( y i^i A ) -> E. y e. K x = ( y i^i A ) ) ) |
|
| 3 | 2 | ad2antlr | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> ( E. y e. J x = ( y i^i A ) -> E. y e. K x = ( y i^i A ) ) ) |
| 4 | n0i | |- ( x e. ( J |`t A ) -> -. ( J |`t A ) = (/) ) |
|
| 5 | restfn | |- |`t Fn ( _V X. _V ) |
|
| 6 | 5 | fndmi | |- dom |`t = ( _V X. _V ) |
| 7 | 6 | ndmov | |- ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) ) |
| 8 | 4 7 | nsyl2 | |- ( x e. ( J |`t A ) -> ( J e. _V /\ A e. _V ) ) |
| 9 | 8 | adantl | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> ( J e. _V /\ A e. _V ) ) |
| 10 | elrest | |- ( ( J e. _V /\ A e. _V ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) ) |
| 12 | simpll | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> K e. V ) |
|
| 13 | 9 | simprd | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> A e. _V ) |
| 14 | elrest | |- ( ( K e. V /\ A e. _V ) -> ( x e. ( K |`t A ) <-> E. y e. K x = ( y i^i A ) ) ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> ( x e. ( K |`t A ) <-> E. y e. K x = ( y i^i A ) ) ) |
| 16 | 3 11 15 | 3imtr4d | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> ( x e. ( J |`t A ) -> x e. ( K |`t A ) ) ) |
| 17 | 1 16 | mpd | |- ( ( ( K e. V /\ J C_ K ) /\ x e. ( J |`t A ) ) -> x e. ( K |`t A ) ) |
| 18 | 17 | ex | |- ( ( K e. V /\ J C_ K ) -> ( x e. ( J |`t A ) -> x e. ( K |`t A ) ) ) |
| 19 | 18 | ssrdv | |- ( ( K e. V /\ J C_ K ) -> ( J |`t A ) C_ ( K |`t A ) ) |