This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspm.y | |- Y = ( BaseSet ` W ) |
|
| sspm.m | |- M = ( -v ` U ) |
||
| sspm.l | |- L = ( -v ` W ) |
||
| sspm.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspm | |- ( ( U e. NrmCVec /\ W e. H ) -> L = ( M |` ( Y X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspm.y | |- Y = ( BaseSet ` W ) |
|
| 2 | sspm.m | |- M = ( -v ` U ) |
|
| 3 | sspm.l | |- L = ( -v ` W ) |
|
| 4 | sspm.h | |- H = ( SubSp ` U ) |
|
| 5 | 1 2 3 4 | sspmval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( x e. Y /\ y e. Y ) ) -> ( x L y ) = ( x M y ) ) |
| 6 | 1 3 | nvmf | |- ( W e. NrmCVec -> L : ( Y X. Y ) --> Y ) |
| 7 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 8 | 7 2 | nvmf | |- ( U e. NrmCVec -> M : ( ( BaseSet ` U ) X. ( BaseSet ` U ) ) --> ( BaseSet ` U ) ) |
| 9 | 1 4 5 6 8 | sspmlem | |- ( ( U e. NrmCVec /\ W e. H ) -> L = ( M |` ( Y X. Y ) ) ) |