This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a set A is the intersection of a finite subset of A . (Contributed by FL, 27-Apr-2008) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfii |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ||
| 2 | 1 | intsn | |
| 3 | simpl | ||
| 4 | simpr | ||
| 5 | 4 | snssd | |
| 6 | 1 | snnz | |
| 7 | 6 | a1i | |
| 8 | snfi | ||
| 9 | 8 | a1i | |
| 10 | elfir | ||
| 11 | 3 5 7 9 10 | syl13anc | |
| 12 | 2 11 | eqeltrrid | |
| 13 | 12 | ex | |
| 14 | 13 | ssrdv |