This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | keephyp3v.1 | |- ( A = if ( ph , A , D ) -> ( rh <-> ch ) ) |
|
| keephyp3v.2 | |- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
||
| keephyp3v.3 | |- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
||
| keephyp3v.4 | |- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
||
| keephyp3v.5 | |- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
||
| keephyp3v.6 | |- ( S = if ( ph , C , S ) -> ( si <-> ta ) ) |
||
| keephyp3v.7 | |- rh |
||
| keephyp3v.8 | |- et |
||
| Assertion | keephyp3v | |- ta |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | keephyp3v.1 | |- ( A = if ( ph , A , D ) -> ( rh <-> ch ) ) |
|
| 2 | keephyp3v.2 | |- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
|
| 3 | keephyp3v.3 | |- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
|
| 4 | keephyp3v.4 | |- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
|
| 5 | keephyp3v.5 | |- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
|
| 6 | keephyp3v.6 | |- ( S = if ( ph , C , S ) -> ( si <-> ta ) ) |
|
| 7 | keephyp3v.7 | |- rh |
|
| 8 | keephyp3v.8 | |- et |
|
| 9 | iftrue | |- ( ph -> if ( ph , A , D ) = A ) |
|
| 10 | 9 | eqcomd | |- ( ph -> A = if ( ph , A , D ) ) |
| 11 | 10 1 | syl | |- ( ph -> ( rh <-> ch ) ) |
| 12 | iftrue | |- ( ph -> if ( ph , B , R ) = B ) |
|
| 13 | 12 | eqcomd | |- ( ph -> B = if ( ph , B , R ) ) |
| 14 | 13 2 | syl | |- ( ph -> ( ch <-> th ) ) |
| 15 | iftrue | |- ( ph -> if ( ph , C , S ) = C ) |
|
| 16 | 15 | eqcomd | |- ( ph -> C = if ( ph , C , S ) ) |
| 17 | 16 3 | syl | |- ( ph -> ( th <-> ta ) ) |
| 18 | 11 14 17 | 3bitrd | |- ( ph -> ( rh <-> ta ) ) |
| 19 | 7 18 | mpbii | |- ( ph -> ta ) |
| 20 | iffalse | |- ( -. ph -> if ( ph , A , D ) = D ) |
|
| 21 | 20 | eqcomd | |- ( -. ph -> D = if ( ph , A , D ) ) |
| 22 | 21 4 | syl | |- ( -. ph -> ( et <-> ze ) ) |
| 23 | iffalse | |- ( -. ph -> if ( ph , B , R ) = R ) |
|
| 24 | 23 | eqcomd | |- ( -. ph -> R = if ( ph , B , R ) ) |
| 25 | 24 5 | syl | |- ( -. ph -> ( ze <-> si ) ) |
| 26 | iffalse | |- ( -. ph -> if ( ph , C , S ) = S ) |
|
| 27 | 26 | eqcomd | |- ( -. ph -> S = if ( ph , C , S ) ) |
| 28 | 27 6 | syl | |- ( -. ph -> ( si <-> ta ) ) |
| 29 | 22 25 28 | 3bitrd | |- ( -. ph -> ( et <-> ta ) ) |
| 30 | 8 29 | mpbii | |- ( -. ph -> ta ) |
| 31 | 19 30 | pm2.61i | |- ta |