This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis containing 3 class variables. (Contributed by NM, 14-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimhyp3v.1 | |- ( A = if ( ph , A , D ) -> ( ph <-> ch ) ) |
|
| elimhyp3v.2 | |- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
||
| elimhyp3v.3 | |- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
||
| elimhyp3v.4 | |- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
||
| elimhyp3v.5 | |- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
||
| elimhyp3v.6 | |- ( S = if ( ph , C , S ) -> ( si <-> ta ) ) |
||
| elimhyp3v.7 | |- et |
||
| Assertion | elimhyp3v | |- ta |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimhyp3v.1 | |- ( A = if ( ph , A , D ) -> ( ph <-> ch ) ) |
|
| 2 | elimhyp3v.2 | |- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
|
| 3 | elimhyp3v.3 | |- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
|
| 4 | elimhyp3v.4 | |- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
|
| 5 | elimhyp3v.5 | |- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
|
| 6 | elimhyp3v.6 | |- ( S = if ( ph , C , S ) -> ( si <-> ta ) ) |
|
| 7 | elimhyp3v.7 | |- et |
|
| 8 | iftrue | |- ( ph -> if ( ph , A , D ) = A ) |
|
| 9 | 8 | eqcomd | |- ( ph -> A = if ( ph , A , D ) ) |
| 10 | 9 1 | syl | |- ( ph -> ( ph <-> ch ) ) |
| 11 | iftrue | |- ( ph -> if ( ph , B , R ) = B ) |
|
| 12 | 11 | eqcomd | |- ( ph -> B = if ( ph , B , R ) ) |
| 13 | 12 2 | syl | |- ( ph -> ( ch <-> th ) ) |
| 14 | iftrue | |- ( ph -> if ( ph , C , S ) = C ) |
|
| 15 | 14 | eqcomd | |- ( ph -> C = if ( ph , C , S ) ) |
| 16 | 15 3 | syl | |- ( ph -> ( th <-> ta ) ) |
| 17 | 10 13 16 | 3bitrd | |- ( ph -> ( ph <-> ta ) ) |
| 18 | 17 | ibi | |- ( ph -> ta ) |
| 19 | iffalse | |- ( -. ph -> if ( ph , A , D ) = D ) |
|
| 20 | 19 | eqcomd | |- ( -. ph -> D = if ( ph , A , D ) ) |
| 21 | 20 4 | syl | |- ( -. ph -> ( et <-> ze ) ) |
| 22 | iffalse | |- ( -. ph -> if ( ph , B , R ) = R ) |
|
| 23 | 22 | eqcomd | |- ( -. ph -> R = if ( ph , B , R ) ) |
| 24 | 23 5 | syl | |- ( -. ph -> ( ze <-> si ) ) |
| 25 | iffalse | |- ( -. ph -> if ( ph , C , S ) = S ) |
|
| 26 | 25 | eqcomd | |- ( -. ph -> S = if ( ph , C , S ) ) |
| 27 | 26 6 | syl | |- ( -. ph -> ( si <-> ta ) ) |
| 28 | 21 24 27 | 3bitrd | |- ( -. ph -> ( et <-> ta ) ) |
| 29 | 7 28 | mpbii | |- ( -. ph -> ta ) |
| 30 | 18 29 | pm2.61i | |- ta |