This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005) (Revised by NM, 17-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbexg | |- ( A. x B e. W -> [_ A / x ]_ B e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
| 2 | abid2 | |- { y | y e. B } = B |
|
| 3 | elex | |- ( B e. W -> B e. _V ) |
|
| 4 | 2 3 | eqeltrid | |- ( B e. W -> { y | y e. B } e. _V ) |
| 5 | 4 | alimi | |- ( A. x B e. W -> A. x { y | y e. B } e. _V ) |
| 6 | spsbc | |- ( A e. _V -> ( A. x { y | y e. B } e. _V -> [. A / x ]. { y | y e. B } e. _V ) ) |
|
| 7 | 5 6 | syl5 | |- ( A e. _V -> ( A. x B e. W -> [. A / x ]. { y | y e. B } e. _V ) ) |
| 8 | nfcv | |- F/_ x _V |
|
| 9 | 8 | sbcabel | |- ( A e. _V -> ( [. A / x ]. { y | y e. B } e. _V <-> { y | [. A / x ]. y e. B } e. _V ) ) |
| 10 | 7 9 | sylibd | |- ( A e. _V -> ( A. x B e. W -> { y | [. A / x ]. y e. B } e. _V ) ) |
| 11 | 10 | imp | |- ( ( A e. _V /\ A. x B e. W ) -> { y | [. A / x ]. y e. B } e. _V ) |
| 12 | 1 11 | eqeltrid | |- ( ( A e. _V /\ A. x B e. W ) -> [_ A / x ]_ B e. _V ) |
| 13 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
|
| 14 | 0ex | |- (/) e. _V |
|
| 15 | 13 14 | eqeltrdi | |- ( -. A e. _V -> [_ A / x ]_ B e. _V ) |
| 16 | 15 | adantr | |- ( ( -. A e. _V /\ A. x B e. W ) -> [_ A / x ]_ B e. _V ) |
| 17 | 12 16 | pm2.61ian | |- ( A. x B e. W -> [_ A / x ]_ B e. _V ) |