This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sscfn1.1 | |- ( ph -> H C_cat J ) |
|
| sscfn2.2 | |- ( ph -> T = dom dom J ) |
||
| Assertion | sscfn2 | |- ( ph -> J Fn ( T X. T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscfn1.1 | |- ( ph -> H C_cat J ) |
|
| 2 | sscfn2.2 | |- ( ph -> T = dom dom J ) |
|
| 3 | brssc | |- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) ) |
|
| 4 | 1 3 | sylib | |- ( ph -> E. t ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) ) |
| 5 | simpr | |- ( ( ph /\ J Fn ( t X. t ) ) -> J Fn ( t X. t ) ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ J Fn ( t X. t ) ) -> T = dom dom J ) |
| 7 | fndm | |- ( J Fn ( t X. t ) -> dom J = ( t X. t ) ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ J Fn ( t X. t ) ) -> dom J = ( t X. t ) ) |
| 9 | 8 | dmeqd | |- ( ( ph /\ J Fn ( t X. t ) ) -> dom dom J = dom ( t X. t ) ) |
| 10 | dmxpid | |- dom ( t X. t ) = t |
|
| 11 | 9 10 | eqtrdi | |- ( ( ph /\ J Fn ( t X. t ) ) -> dom dom J = t ) |
| 12 | 6 11 | eqtr2d | |- ( ( ph /\ J Fn ( t X. t ) ) -> t = T ) |
| 13 | 12 | sqxpeqd | |- ( ( ph /\ J Fn ( t X. t ) ) -> ( t X. t ) = ( T X. T ) ) |
| 14 | 13 | fneq2d | |- ( ( ph /\ J Fn ( t X. t ) ) -> ( J Fn ( t X. t ) <-> J Fn ( T X. T ) ) ) |
| 15 | 5 14 | mpbid | |- ( ( ph /\ J Fn ( t X. t ) ) -> J Fn ( T X. T ) ) |
| 16 | 15 | ex | |- ( ph -> ( J Fn ( t X. t ) -> J Fn ( T X. T ) ) ) |
| 17 | 16 | adantrd | |- ( ph -> ( ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) -> J Fn ( T X. T ) ) ) |
| 18 | 17 | exlimdv | |- ( ph -> ( E. t ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) -> J Fn ( T X. T ) ) ) |
| 19 | 4 18 | mpd | |- ( ph -> J Fn ( T X. T ) ) |