This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root is monotonic. (Contributed by NM, 17-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtle | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( sqrt ` A ) <_ ( sqrt ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 2 | sqrtge0 | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) |
|
| 3 | 1 2 | jca | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) e. RR /\ 0 <_ ( sqrt ` A ) ) ) |
| 4 | resqrtcl | |- ( ( B e. RR /\ 0 <_ B ) -> ( sqrt ` B ) e. RR ) |
|
| 5 | sqrtge0 | |- ( ( B e. RR /\ 0 <_ B ) -> 0 <_ ( sqrt ` B ) ) |
|
| 6 | 4 5 | jca | |- ( ( B e. RR /\ 0 <_ B ) -> ( ( sqrt ` B ) e. RR /\ 0 <_ ( sqrt ` B ) ) ) |
| 7 | le2sq | |- ( ( ( ( sqrt ` A ) e. RR /\ 0 <_ ( sqrt ` A ) ) /\ ( ( sqrt ` B ) e. RR /\ 0 <_ ( sqrt ` B ) ) ) -> ( ( sqrt ` A ) <_ ( sqrt ` B ) <-> ( ( sqrt ` A ) ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) ) ) |
|
| 8 | 3 6 7 | syl2an | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) <_ ( sqrt ` B ) <-> ( ( sqrt ` A ) ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) ) ) |
| 9 | resqrtth | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
| 10 | resqrtth | |- ( ( B e. RR /\ 0 <_ B ) -> ( ( sqrt ` B ) ^ 2 ) = B ) |
|
| 11 | 9 10 | breqan12d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( ( sqrt ` A ) ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) <-> A <_ B ) ) |
| 12 | 8 11 | bitr2d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( sqrt ` A ) <_ ( sqrt ` B ) ) ) |