This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root is strictly monotonic. Closed form of sqrtlti . (Contributed by Scott Fenton, 17-Apr-2014) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtlt | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( sqrt ` A ) < ( sqrt ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtle | |- ( ( ( B e. RR /\ 0 <_ B ) /\ ( A e. RR /\ 0 <_ A ) ) -> ( B <_ A <-> ( sqrt ` B ) <_ ( sqrt ` A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B <_ A <-> ( sqrt ` B ) <_ ( sqrt ` A ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( -. B <_ A <-> -. ( sqrt ` B ) <_ ( sqrt ` A ) ) ) |
| 4 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. RR ) |
|
| 5 | simprl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B e. RR ) |
|
| 6 | 4 5 | ltnled | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> -. B <_ A ) ) |
| 7 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 8 | 7 | adantr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqrt ` A ) e. RR ) |
| 9 | resqrtcl | |- ( ( B e. RR /\ 0 <_ B ) -> ( sqrt ` B ) e. RR ) |
|
| 10 | 9 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqrt ` B ) e. RR ) |
| 11 | 8 10 | ltnled | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) < ( sqrt ` B ) <-> -. ( sqrt ` B ) <_ ( sqrt ` A ) ) ) |
| 12 | 3 6 11 | 3bitr4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( sqrt ` A ) < ( sqrt ` B ) ) ) |