This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005) (Revised by Mario Carneiro, 6-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrt2gt1lt2 | |- ( 1 < ( sqrt ` 2 ) /\ ( sqrt ` 2 ) < 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt1 | |- ( sqrt ` 1 ) = 1 |
|
| 2 | 1lt2 | |- 1 < 2 |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | 0le1 | |- 0 <_ 1 |
|
| 5 | 2re | |- 2 e. RR |
|
| 6 | 0le2 | |- 0 <_ 2 |
|
| 7 | sqrtlt | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 2 e. RR /\ 0 <_ 2 ) ) -> ( 1 < 2 <-> ( sqrt ` 1 ) < ( sqrt ` 2 ) ) ) |
|
| 8 | 3 4 5 6 7 | mp4an | |- ( 1 < 2 <-> ( sqrt ` 1 ) < ( sqrt ` 2 ) ) |
| 9 | 2 8 | mpbi | |- ( sqrt ` 1 ) < ( sqrt ` 2 ) |
| 10 | 1 9 | eqbrtrri | |- 1 < ( sqrt ` 2 ) |
| 11 | 2lt4 | |- 2 < 4 |
|
| 12 | 4re | |- 4 e. RR |
|
| 13 | 0re | |- 0 e. RR |
|
| 14 | 4pos | |- 0 < 4 |
|
| 15 | 13 12 14 | ltleii | |- 0 <_ 4 |
| 16 | sqrtlt | |- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( 4 e. RR /\ 0 <_ 4 ) ) -> ( 2 < 4 <-> ( sqrt ` 2 ) < ( sqrt ` 4 ) ) ) |
|
| 17 | 5 6 12 15 16 | mp4an | |- ( 2 < 4 <-> ( sqrt ` 2 ) < ( sqrt ` 4 ) ) |
| 18 | 11 17 | mpbi | |- ( sqrt ` 2 ) < ( sqrt ` 4 ) |
| 19 | sqrt4 | |- ( sqrt ` 4 ) = 2 |
|
| 20 | 18 19 | breqtri | |- ( sqrt ` 2 ) < 2 |
| 21 | 10 20 | pm3.2i | |- ( 1 < ( sqrt ` 2 ) /\ ( sqrt ` 2 ) < 2 ) |