This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005) (Revised by Mario Carneiro, 6-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrt2gt1lt2 | ⊢ ( 1 < ( √ ‘ 2 ) ∧ ( √ ‘ 2 ) < 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt1 | ⊢ ( √ ‘ 1 ) = 1 | |
| 2 | 1lt2 | ⊢ 1 < 2 | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | 0le1 | ⊢ 0 ≤ 1 | |
| 5 | 2re | ⊢ 2 ∈ ℝ | |
| 6 | 0le2 | ⊢ 0 ≤ 2 | |
| 7 | sqrtlt | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) → ( 1 < 2 ↔ ( √ ‘ 1 ) < ( √ ‘ 2 ) ) ) | |
| 8 | 3 4 5 6 7 | mp4an | ⊢ ( 1 < 2 ↔ ( √ ‘ 1 ) < ( √ ‘ 2 ) ) |
| 9 | 2 8 | mpbi | ⊢ ( √ ‘ 1 ) < ( √ ‘ 2 ) |
| 10 | 1 9 | eqbrtrri | ⊢ 1 < ( √ ‘ 2 ) |
| 11 | 2lt4 | ⊢ 2 < 4 | |
| 12 | 4re | ⊢ 4 ∈ ℝ | |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 4pos | ⊢ 0 < 4 | |
| 15 | 13 12 14 | ltleii | ⊢ 0 ≤ 4 |
| 16 | sqrtlt | ⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 4 ∈ ℝ ∧ 0 ≤ 4 ) ) → ( 2 < 4 ↔ ( √ ‘ 2 ) < ( √ ‘ 4 ) ) ) | |
| 17 | 5 6 12 15 16 | mp4an | ⊢ ( 2 < 4 ↔ ( √ ‘ 2 ) < ( √ ‘ 4 ) ) |
| 18 | 11 17 | mpbi | ⊢ ( √ ‘ 2 ) < ( √ ‘ 4 ) |
| 19 | sqrt4 | ⊢ ( √ ‘ 4 ) = 2 | |
| 20 | 18 19 | breqtri | ⊢ ( √ ‘ 2 ) < 2 |
| 21 | 10 20 | pm3.2i | ⊢ ( 1 < ( √ ‘ 2 ) ∧ ( √ ‘ 2 ) < 2 ) |