This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqoddm1div8 | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( M ^ 2 ) - 1 ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( M = ( ( 2 x. N ) + 1 ) -> ( M ^ 2 ) = ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) |
|
| 2 | 2z | |- 2 e. ZZ |
|
| 3 | 2 | a1i | |- ( N e. ZZ -> 2 e. ZZ ) |
| 4 | id | |- ( N e. ZZ -> N e. ZZ ) |
|
| 5 | 3 4 | zmulcld | |- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
| 6 | 5 | zcnd | |- ( N e. ZZ -> ( 2 x. N ) e. CC ) |
| 7 | binom21 | |- ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
|
| 8 | 6 7 | syl | |- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 9 | 1 8 | sylan9eqr | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( M ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 10 | 9 | oveq1d | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( M ^ 2 ) - 1 ) = ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) ) |
| 11 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 12 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 13 | 11 12 | sqmuld | |- ( N e. ZZ -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
| 14 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 15 | 14 | a1i | |- ( N e. ZZ -> ( 2 ^ 2 ) = 4 ) |
| 16 | 15 | oveq1d | |- ( N e. ZZ -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) = ( 4 x. ( N ^ 2 ) ) ) |
| 17 | 13 16 | eqtrd | |- ( N e. ZZ -> ( ( 2 x. N ) ^ 2 ) = ( 4 x. ( N ^ 2 ) ) ) |
| 18 | mulass | |- ( ( 2 e. CC /\ 2 e. CC /\ N e. CC ) -> ( ( 2 x. 2 ) x. N ) = ( 2 x. ( 2 x. N ) ) ) |
|
| 19 | 18 | eqcomd | |- ( ( 2 e. CC /\ 2 e. CC /\ N e. CC ) -> ( 2 x. ( 2 x. N ) ) = ( ( 2 x. 2 ) x. N ) ) |
| 20 | 11 11 12 19 | syl3anc | |- ( N e. ZZ -> ( 2 x. ( 2 x. N ) ) = ( ( 2 x. 2 ) x. N ) ) |
| 21 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 22 | 21 | a1i | |- ( N e. ZZ -> ( 2 x. 2 ) = 4 ) |
| 23 | 22 | oveq1d | |- ( N e. ZZ -> ( ( 2 x. 2 ) x. N ) = ( 4 x. N ) ) |
| 24 | 20 23 | eqtrd | |- ( N e. ZZ -> ( 2 x. ( 2 x. N ) ) = ( 4 x. N ) ) |
| 25 | 17 24 | oveq12d | |- ( N e. ZZ -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 26 | 25 | oveq1d | |- ( N e. ZZ -> ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) = ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) ) |
| 27 | 26 | oveq1d | |- ( N e. ZZ -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) = ( ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) - 1 ) ) |
| 28 | 4z | |- 4 e. ZZ |
|
| 29 | 28 | a1i | |- ( N e. ZZ -> 4 e. ZZ ) |
| 30 | zsqcl | |- ( N e. ZZ -> ( N ^ 2 ) e. ZZ ) |
|
| 31 | 29 30 | zmulcld | |- ( N e. ZZ -> ( 4 x. ( N ^ 2 ) ) e. ZZ ) |
| 32 | 31 | zcnd | |- ( N e. ZZ -> ( 4 x. ( N ^ 2 ) ) e. CC ) |
| 33 | 29 4 | zmulcld | |- ( N e. ZZ -> ( 4 x. N ) e. ZZ ) |
| 34 | 33 | zcnd | |- ( N e. ZZ -> ( 4 x. N ) e. CC ) |
| 35 | 32 34 | addcld | |- ( N e. ZZ -> ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) e. CC ) |
| 36 | pncan1 | |- ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) e. CC -> ( ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
|
| 37 | 35 36 | syl | |- ( N e. ZZ -> ( ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 38 | 27 37 | eqtrd | |- ( N e. ZZ -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 39 | 38 | adantr | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 40 | 10 39 | eqtrd | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( M ^ 2 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 41 | 40 | oveq1d | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( M ^ 2 ) - 1 ) / 8 ) = ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) / 8 ) ) |
| 42 | 4cn | |- 4 e. CC |
|
| 43 | 42 | a1i | |- ( N e. ZZ -> 4 e. CC ) |
| 44 | 30 | zcnd | |- ( N e. ZZ -> ( N ^ 2 ) e. CC ) |
| 45 | 43 44 12 | adddid | |- ( N e. ZZ -> ( 4 x. ( ( N ^ 2 ) + N ) ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 46 | 45 | eqcomd | |- ( N e. ZZ -> ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) = ( 4 x. ( ( N ^ 2 ) + N ) ) ) |
| 47 | 46 | oveq1d | |- ( N e. ZZ -> ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) / 8 ) = ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) ) |
| 48 | 47 | adantr | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) / 8 ) = ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) ) |
| 49 | 4t2e8 | |- ( 4 x. 2 ) = 8 |
|
| 50 | 49 | a1i | |- ( N e. ZZ -> ( 4 x. 2 ) = 8 ) |
| 51 | 50 | eqcomd | |- ( N e. ZZ -> 8 = ( 4 x. 2 ) ) |
| 52 | 51 | oveq2d | |- ( N e. ZZ -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) = ( ( 4 x. ( ( N ^ 2 ) + N ) ) / ( 4 x. 2 ) ) ) |
| 53 | 30 4 | zaddcld | |- ( N e. ZZ -> ( ( N ^ 2 ) + N ) e. ZZ ) |
| 54 | 53 | zcnd | |- ( N e. ZZ -> ( ( N ^ 2 ) + N ) e. CC ) |
| 55 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 56 | 55 | a1i | |- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 57 | 4ne0 | |- 4 =/= 0 |
|
| 58 | 42 57 | pm3.2i | |- ( 4 e. CC /\ 4 =/= 0 ) |
| 59 | 58 | a1i | |- ( N e. ZZ -> ( 4 e. CC /\ 4 =/= 0 ) ) |
| 60 | divcan5 | |- ( ( ( ( N ^ 2 ) + N ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / ( 4 x. 2 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
|
| 61 | 54 56 59 60 | syl3anc | |- ( N e. ZZ -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / ( 4 x. 2 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 62 | 12 | sqvald | |- ( N e. ZZ -> ( N ^ 2 ) = ( N x. N ) ) |
| 63 | 62 | oveq1d | |- ( N e. ZZ -> ( ( N ^ 2 ) + N ) = ( ( N x. N ) + N ) ) |
| 64 | 12 | mulridd | |- ( N e. ZZ -> ( N x. 1 ) = N ) |
| 65 | 64 | eqcomd | |- ( N e. ZZ -> N = ( N x. 1 ) ) |
| 66 | 65 | oveq2d | |- ( N e. ZZ -> ( ( N x. N ) + N ) = ( ( N x. N ) + ( N x. 1 ) ) ) |
| 67 | 1cnd | |- ( N e. ZZ -> 1 e. CC ) |
|
| 68 | adddi | |- ( ( N e. CC /\ N e. CC /\ 1 e. CC ) -> ( N x. ( N + 1 ) ) = ( ( N x. N ) + ( N x. 1 ) ) ) |
|
| 69 | 68 | eqcomd | |- ( ( N e. CC /\ N e. CC /\ 1 e. CC ) -> ( ( N x. N ) + ( N x. 1 ) ) = ( N x. ( N + 1 ) ) ) |
| 70 | 12 12 67 69 | syl3anc | |- ( N e. ZZ -> ( ( N x. N ) + ( N x. 1 ) ) = ( N x. ( N + 1 ) ) ) |
| 71 | 63 66 70 | 3eqtrd | |- ( N e. ZZ -> ( ( N ^ 2 ) + N ) = ( N x. ( N + 1 ) ) ) |
| 72 | 71 | oveq1d | |- ( N e. ZZ -> ( ( ( N ^ 2 ) + N ) / 2 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| 73 | 52 61 72 | 3eqtrd | |- ( N e. ZZ -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| 74 | 73 | adantr | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| 75 | 41 48 74 | 3eqtrd | |- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( M ^ 2 ) - 1 ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |