This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqoddm1div8z | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑁 ) ) | |
| 2 | 1 | biimpa | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑁 ) |
| 3 | eqcom | ⊢ ( ( ( 2 · 𝑘 ) + 1 ) = 𝑁 ↔ 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) | |
| 4 | sqoddm1div8 | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) = ( ( 𝑘 · ( 𝑘 + 1 ) ) / 2 ) ) | |
| 5 | 4 | adantll | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) = ( ( 𝑘 · ( 𝑘 + 1 ) ) / 2 ) ) |
| 6 | mulsucdiv2z | ⊢ ( 𝑘 ∈ ℤ → ( ( 𝑘 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℤ ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( 𝑘 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℤ ) |
| 8 | 5 7 | eqeltrd | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) |
| 9 | 8 | ex | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑁 = ( ( 2 · 𝑘 ) + 1 ) → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) ) |
| 10 | 3 9 | biimtrid | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑘 ) + 1 ) = 𝑁 → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) ) |
| 11 | 10 | rexlimdva | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑁 → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) ) |
| 12 | 2 11 | mpd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ( 𝑁 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) |