This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanun | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( span ` ( A u. B ) ) = ( ( span ` A ) +H ( span ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 | |- ( A = if ( A C_ ~H , A , ~H ) -> ( A u. B ) = ( if ( A C_ ~H , A , ~H ) u. B ) ) |
|
| 2 | 1 | fveq2d | |- ( A = if ( A C_ ~H , A , ~H ) -> ( span ` ( A u. B ) ) = ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) ) |
| 3 | fveq2 | |- ( A = if ( A C_ ~H , A , ~H ) -> ( span ` A ) = ( span ` if ( A C_ ~H , A , ~H ) ) ) |
|
| 4 | 3 | oveq1d | |- ( A = if ( A C_ ~H , A , ~H ) -> ( ( span ` A ) +H ( span ` B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( A = if ( A C_ ~H , A , ~H ) -> ( ( span ` ( A u. B ) ) = ( ( span ` A ) +H ( span ` B ) ) <-> ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) ) ) |
| 6 | uneq2 | |- ( B = if ( B C_ ~H , B , ~H ) -> ( if ( A C_ ~H , A , ~H ) u. B ) = ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) |
|
| 7 | 6 | fveq2d | |- ( B = if ( B C_ ~H , B , ~H ) -> ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) = ( span ` ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) ) |
| 8 | fveq2 | |- ( B = if ( B C_ ~H , B , ~H ) -> ( span ` B ) = ( span ` if ( B C_ ~H , B , ~H ) ) ) |
|
| 9 | 8 | oveq2d | |- ( B = if ( B C_ ~H , B , ~H ) -> ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` if ( B C_ ~H , B , ~H ) ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( B = if ( B C_ ~H , B , ~H ) -> ( ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) <-> ( span ` ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` if ( B C_ ~H , B , ~H ) ) ) ) ) |
| 11 | sseq1 | |- ( A = if ( A C_ ~H , A , ~H ) -> ( A C_ ~H <-> if ( A C_ ~H , A , ~H ) C_ ~H ) ) |
|
| 12 | sseq1 | |- ( ~H = if ( A C_ ~H , A , ~H ) -> ( ~H C_ ~H <-> if ( A C_ ~H , A , ~H ) C_ ~H ) ) |
|
| 13 | ssid | |- ~H C_ ~H |
|
| 14 | 11 12 13 | elimhyp | |- if ( A C_ ~H , A , ~H ) C_ ~H |
| 15 | sseq1 | |- ( B = if ( B C_ ~H , B , ~H ) -> ( B C_ ~H <-> if ( B C_ ~H , B , ~H ) C_ ~H ) ) |
|
| 16 | sseq1 | |- ( ~H = if ( B C_ ~H , B , ~H ) -> ( ~H C_ ~H <-> if ( B C_ ~H , B , ~H ) C_ ~H ) ) |
|
| 17 | 15 16 13 | elimhyp | |- if ( B C_ ~H , B , ~H ) C_ ~H |
| 18 | 14 17 | spanuni | |- ( span ` ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` if ( B C_ ~H , B , ~H ) ) ) |
| 19 | 5 10 18 | dedth2h | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( span ` ( A u. B ) ) = ( ( span ` A ) +H ( span ` B ) ) ) |