This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnss2 | |- ( ( A e. SH /\ B e. ~H ) -> ( B e. A <-> ( span ` { B } ) C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnss | |- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) |
|
| 2 | 1 | ex | |- ( A e. SH -> ( B e. A -> ( span ` { B } ) C_ A ) ) |
| 3 | 2 | adantr | |- ( ( A e. SH /\ B e. ~H ) -> ( B e. A -> ( span ` { B } ) C_ A ) ) |
| 4 | spansnid | |- ( B e. ~H -> B e. ( span ` { B } ) ) |
|
| 5 | ssel | |- ( ( span ` { B } ) C_ A -> ( B e. ( span ` { B } ) -> B e. A ) ) |
|
| 6 | 4 5 | syl5com | |- ( B e. ~H -> ( ( span ` { B } ) C_ A -> B e. A ) ) |
| 7 | 6 | adantl | |- ( ( A e. SH /\ B e. ~H ) -> ( ( span ` { B } ) C_ A -> B e. A ) ) |
| 8 | 3 7 | impbid | |- ( ( A e. SH /\ B e. ~H ) -> ( B e. A <-> ( span ` { B } ) C_ A ) ) |