This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnss2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ 𝐴 ↔ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) | |
| 2 | 1 | ex | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ 𝐴 → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ 𝐴 → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |
| 4 | spansnid | ⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) | |
| 5 | ssel | ⊢ ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → ( 𝐵 ∈ ( span ‘ { 𝐵 } ) → 𝐵 ∈ 𝐴 ) ) | |
| 6 | 4 5 | syl5com | ⊢ ( 𝐵 ∈ ℋ → ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 8 | 3 7 | impbid | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ 𝐴 ↔ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |