This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector belonging to both a subspace and the span of the singleton of a vector not in it must be zero. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn5 | |- ( A e. SH -> ( ( ( B e. ~H /\ -. B e. A ) /\ ( C e. ( span ` { B } ) /\ C e. A ) ) -> C = 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn4 | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C =/= 0h ) ) -> ( B e. A <-> C e. A ) ) |
|
| 2 | 1 | biimprd | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C =/= 0h ) ) -> ( C e. A -> B e. A ) ) |
| 3 | 2 | exp32 | |- ( ( A e. SH /\ B e. ~H ) -> ( C e. ( span ` { B } ) -> ( C =/= 0h -> ( C e. A -> B e. A ) ) ) ) |
| 4 | 3 | com34 | |- ( ( A e. SH /\ B e. ~H ) -> ( C e. ( span ` { B } ) -> ( C e. A -> ( C =/= 0h -> B e. A ) ) ) ) |
| 5 | 4 | imp32 | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C e. A ) ) -> ( C =/= 0h -> B e. A ) ) |
| 6 | 5 | necon1bd | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C e. A ) ) -> ( -. B e. A -> C = 0h ) ) |
| 7 | 6 | exp31 | |- ( A e. SH -> ( B e. ~H -> ( ( C e. ( span ` { B } ) /\ C e. A ) -> ( -. B e. A -> C = 0h ) ) ) ) |
| 8 | 7 | com34 | |- ( A e. SH -> ( B e. ~H -> ( -. B e. A -> ( ( C e. ( span ` { B } ) /\ C e. A ) -> C = 0h ) ) ) ) |
| 9 | 8 | imp4c | |- ( A e. SH -> ( ( ( B e. ~H /\ -. B e. A ) /\ ( C e. ( span ` { B } ) /\ C e. A ) ) -> C = 0h ) ) |