This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xporderlem.1 | |- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
|
| Assertion | xporderlem | |- ( <. a , b >. T <. c , d >. <-> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xporderlem.1 | |- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
|
| 2 | df-br | |- ( <. a , b >. T <. c , d >. <-> <. <. a , b >. , <. c , d >. >. e. T ) |
|
| 3 | 1 | eleq2i | |- ( <. <. a , b >. , <. c , d >. >. e. T <-> <. <. a , b >. , <. c , d >. >. e. { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } ) |
| 4 | 2 3 | bitri | |- ( <. a , b >. T <. c , d >. <-> <. <. a , b >. , <. c , d >. >. e. { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } ) |
| 5 | opex | |- <. a , b >. e. _V |
|
| 6 | opex | |- <. c , d >. e. _V |
|
| 7 | eleq1 | |- ( x = <. a , b >. -> ( x e. ( A X. B ) <-> <. a , b >. e. ( A X. B ) ) ) |
|
| 8 | opelxp | |- ( <. a , b >. e. ( A X. B ) <-> ( a e. A /\ b e. B ) ) |
|
| 9 | 7 8 | bitrdi | |- ( x = <. a , b >. -> ( x e. ( A X. B ) <-> ( a e. A /\ b e. B ) ) ) |
| 10 | 9 | anbi1d | |- ( x = <. a , b >. -> ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) <-> ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) ) ) |
| 11 | vex | |- a e. _V |
|
| 12 | vex | |- b e. _V |
|
| 13 | 11 12 | op1std | |- ( x = <. a , b >. -> ( 1st ` x ) = a ) |
| 14 | 13 | breq1d | |- ( x = <. a , b >. -> ( ( 1st ` x ) R ( 1st ` y ) <-> a R ( 1st ` y ) ) ) |
| 15 | 13 | eqeq1d | |- ( x = <. a , b >. -> ( ( 1st ` x ) = ( 1st ` y ) <-> a = ( 1st ` y ) ) ) |
| 16 | 11 12 | op2ndd | |- ( x = <. a , b >. -> ( 2nd ` x ) = b ) |
| 17 | 16 | breq1d | |- ( x = <. a , b >. -> ( ( 2nd ` x ) S ( 2nd ` y ) <-> b S ( 2nd ` y ) ) ) |
| 18 | 15 17 | anbi12d | |- ( x = <. a , b >. -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) <-> ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) |
| 19 | 14 18 | orbi12d | |- ( x = <. a , b >. -> ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) <-> ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) ) |
| 20 | 10 19 | anbi12d | |- ( x = <. a , b >. -> ( ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) <-> ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) /\ ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) ) ) |
| 21 | eleq1 | |- ( y = <. c , d >. -> ( y e. ( A X. B ) <-> <. c , d >. e. ( A X. B ) ) ) |
|
| 22 | opelxp | |- ( <. c , d >. e. ( A X. B ) <-> ( c e. A /\ d e. B ) ) |
|
| 23 | 21 22 | bitrdi | |- ( y = <. c , d >. -> ( y e. ( A X. B ) <-> ( c e. A /\ d e. B ) ) ) |
| 24 | 23 | anbi2d | |- ( y = <. c , d >. -> ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) ) ) |
| 25 | vex | |- c e. _V |
|
| 26 | vex | |- d e. _V |
|
| 27 | 25 26 | op1std | |- ( y = <. c , d >. -> ( 1st ` y ) = c ) |
| 28 | 27 | breq2d | |- ( y = <. c , d >. -> ( a R ( 1st ` y ) <-> a R c ) ) |
| 29 | 27 | eqeq2d | |- ( y = <. c , d >. -> ( a = ( 1st ` y ) <-> a = c ) ) |
| 30 | 25 26 | op2ndd | |- ( y = <. c , d >. -> ( 2nd ` y ) = d ) |
| 31 | 30 | breq2d | |- ( y = <. c , d >. -> ( b S ( 2nd ` y ) <-> b S d ) ) |
| 32 | 29 31 | anbi12d | |- ( y = <. c , d >. -> ( ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) <-> ( a = c /\ b S d ) ) ) |
| 33 | 28 32 | orbi12d | |- ( y = <. c , d >. -> ( ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) <-> ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 34 | 24 33 | anbi12d | |- ( y = <. c , d >. -> ( ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) /\ ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) <-> ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) ) |
| 35 | 5 6 20 34 | opelopab | |- ( <. <. a , b >. , <. c , d >. >. e. { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } <-> ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 36 | an4 | |- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) <-> ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) ) |
|
| 37 | 36 | anbi1i | |- ( ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) <-> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 38 | 4 35 37 | 3bitri | |- ( <. a , b >. T <. c , d >. <-> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |