This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | snres0.1 | |- B e. _V |
|
| Assertion | snres0 | |- ( ( { <. A , B >. } |` C ) = (/) <-> -. A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snres0.1 | |- B e. _V |
|
| 2 | relres | |- Rel ( { <. A , B >. } |` C ) |
|
| 3 | reldm0 | |- ( Rel ( { <. A , B >. } |` C ) -> ( ( { <. A , B >. } |` C ) = (/) <-> dom ( { <. A , B >. } |` C ) = (/) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( { <. A , B >. } |` C ) = (/) <-> dom ( { <. A , B >. } |` C ) = (/) ) |
| 5 | dmres | |- dom ( { <. A , B >. } |` C ) = ( C i^i dom { <. A , B >. } ) |
|
| 6 | 1 | dmsnop | |- dom { <. A , B >. } = { A } |
| 7 | 6 | ineq2i | |- ( C i^i dom { <. A , B >. } ) = ( C i^i { A } ) |
| 8 | 5 7 | eqtri | |- dom ( { <. A , B >. } |` C ) = ( C i^i { A } ) |
| 9 | 8 | eqeq1i | |- ( dom ( { <. A , B >. } |` C ) = (/) <-> ( C i^i { A } ) = (/) ) |
| 10 | disjsn | |- ( ( C i^i { A } ) = (/) <-> -. A e. C ) |
|
| 11 | 4 9 10 | 3bitri | |- ( ( { <. A , B >. } |` C ) = (/) <-> -. A e. C ) |