This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imaindm | |- ( R " A ) = ( R " ( A i^i dom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- y e. _V |
|
| 2 | vex | |- x e. _V |
|
| 3 | 1 2 | breldm | |- ( y R x -> y e. dom R ) |
| 4 | 3 | pm4.71ri | |- ( y R x <-> ( y e. dom R /\ y R x ) ) |
| 5 | 4 | rexbii | |- ( E. y e. A y R x <-> E. y e. A ( y e. dom R /\ y R x ) ) |
| 6 | rexin | |- ( E. y e. ( A i^i dom R ) y R x <-> E. y e. A ( y e. dom R /\ y R x ) ) |
|
| 7 | 5 6 | bitr4i | |- ( E. y e. A y R x <-> E. y e. ( A i^i dom R ) y R x ) |
| 8 | 2 | elima | |- ( x e. ( R " A ) <-> E. y e. A y R x ) |
| 9 | 2 | elima | |- ( x e. ( R " ( A i^i dom R ) ) <-> E. y e. ( A i^i dom R ) y R x ) |
| 10 | 7 8 9 | 3bitr4i | |- ( x e. ( R " A ) <-> x e. ( R " ( A i^i dom R ) ) ) |
| 11 | 10 | eqriv | |- ( R " A ) = ( R " ( A i^i dom R ) ) |