This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | smndlsmidm | |- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | elfvdm | |- ( U e. ( SubMnd ` G ) -> G e. dom SubMnd ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 3 | submss | |- ( U e. ( SubMnd ` G ) -> U C_ ( Base ` G ) ) |
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 3 5 1 | lsmvalx | |- ( ( G e. dom SubMnd /\ U C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( U .(+) U ) = ran ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 7 | 2 4 4 6 | syl3anc | |- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) = ran ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 8 | 5 | submcl | |- ( ( U e. ( SubMnd ` G ) /\ x e. U /\ y e. U ) -> ( x ( +g ` G ) y ) e. U ) |
| 9 | 8 | 3expb | |- ( ( U e. ( SubMnd ` G ) /\ ( x e. U /\ y e. U ) ) -> ( x ( +g ` G ) y ) e. U ) |
| 10 | 9 | ralrimivva | |- ( U e. ( SubMnd ` G ) -> A. x e. U A. y e. U ( x ( +g ` G ) y ) e. U ) |
| 11 | eqid | |- ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) = ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) |
|
| 12 | 11 | fmpo | |- ( A. x e. U A. y e. U ( x ( +g ` G ) y ) e. U <-> ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) : ( U X. U ) --> U ) |
| 13 | 10 12 | sylib | |- ( U e. ( SubMnd ` G ) -> ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) : ( U X. U ) --> U ) |
| 14 | 13 | frnd | |- ( U e. ( SubMnd ` G ) -> ran ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) C_ U ) |
| 15 | 7 14 | eqsstrd | |- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) C_ U ) |
| 16 | 3 1 | lsmub1x | |- ( ( U C_ ( Base ` G ) /\ U e. ( SubMnd ` G ) ) -> U C_ ( U .(+) U ) ) |
| 17 | 4 16 | mpancom | |- ( U e. ( SubMnd ` G ) -> U C_ ( U .(+) U ) ) |
| 18 | 15 17 | eqssd | |- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) = U ) |