This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | smndlsmidm | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 ⊕ 𝑈 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | elfvdm | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ dom SubMnd ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 3 | submss | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 3 5 1 | lsmvalx | ⊢ ( ( 𝐺 ∈ dom SubMnd ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑈 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 7 | 2 4 4 6 | syl3anc | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 8 | 5 | submcl | ⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑈 ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑈 ) |
| 10 | 9 | ralrimivva | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑈 ) |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 12 | 11 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑈 ↔ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : ( 𝑈 × 𝑈 ) ⟶ 𝑈 ) |
| 13 | 10 12 | sylib | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : ( 𝑈 × 𝑈 ) ⟶ 𝑈 ) |
| 14 | 13 | frnd | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ran ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑈 ) |
| 15 | 7 14 | eqsstrd | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 ⊕ 𝑈 ) ⊆ 𝑈 ) |
| 16 | 3 1 | lsmub1x | ⊢ ( ( 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑈 ⊕ 𝑈 ) ) |
| 17 | 4 16 | mpancom | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈 ⊆ ( 𝑈 ⊕ 𝑈 ) ) |
| 18 | 15 17 | eqssd | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 ⊕ 𝑈 ) = 𝑈 ) |