This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 2lt10

Description: 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 2lt10
|- 2 < ; 1 0

Proof

Step Hyp Ref Expression
1 2lt3
 |-  2 < 3
2 3lt10
 |-  3 < ; 1 0
3 2re
 |-  2 e. RR
4 3re
 |-  3 e. RR
5 10re
 |-  ; 1 0 e. RR
6 3 4 5 lttri
 |-  ( ( 2 < 3 /\ 3 < ; 1 0 ) -> 2 < ; 1 0 )
7 1 2 6 mp2an
 |-  2 < ; 1 0