This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shorth | |- ( H e. SH -> ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A .ih B ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( G C_ ( _|_ ` H ) -> ( A e. G -> A e. ( _|_ ` H ) ) ) |
|
| 2 | 1 | anim1d | |- ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) ) |
| 3 | 2 | imp | |- ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) |
| 4 | 3 | ancomd | |- ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( B e. H /\ A e. ( _|_ ` H ) ) ) |
| 5 | shocorth | |- ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B .ih A ) = 0 ) ) |
|
| 6 | 5 | imp | |- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B .ih A ) = 0 ) |
| 7 | shss | |- ( H e. SH -> H C_ ~H ) |
|
| 8 | 7 | sseld | |- ( H e. SH -> ( B e. H -> B e. ~H ) ) |
| 9 | shocss | |- ( H e. SH -> ( _|_ ` H ) C_ ~H ) |
|
| 10 | 9 | sseld | |- ( H e. SH -> ( A e. ( _|_ ` H ) -> A e. ~H ) ) |
| 11 | 8 10 | anim12d | |- ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B e. ~H /\ A e. ~H ) ) ) |
| 12 | 11 | imp | |- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B e. ~H /\ A e. ~H ) ) |
| 13 | orthcom | |- ( ( B e. ~H /\ A e. ~H ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) ) |
|
| 14 | 12 13 | syl | |- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) ) |
| 15 | 6 14 | mpbid | |- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) |
| 16 | 4 15 | sylan2 | |- ( ( H e. SH /\ ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) ) -> ( A .ih B ) = 0 ) |
| 17 | 16 | exp32 | |- ( H e. SH -> ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A .ih B ) = 0 ) ) ) |