This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shorth | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐴 ∈ 𝐺 → 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) | |
| 2 | 1 | anim1d | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐵 ∈ 𝐻 ) ) ) |
| 3 | 2 | imp | ⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐵 ∈ 𝐻 ) ) |
| 4 | 3 | ancomd | ⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) ) → ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 5 | shocorth | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐵 ·ih 𝐴 ) = 0 ) ) | |
| 6 | 5 | imp | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐵 ·ih 𝐴 ) = 0 ) |
| 7 | shss | ⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) | |
| 8 | 7 | sseld | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ ) ) |
| 9 | shocss | ⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) | |
| 10 | 9 | sseld | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) → 𝐴 ∈ ℋ ) ) |
| 11 | 8 10 | anim12d | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) |
| 13 | orthcom | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 15 | 6 14 | mpbid | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 16 | 4 15 | sylan2 | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 17 | 16 | exp32 | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) ) |