This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occon2 | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocss | |- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
|
| 2 | ocss | |- ( B C_ ~H -> ( _|_ ` B ) C_ ~H ) |
|
| 3 | 1 2 | anim12ci | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( ( _|_ ` B ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) ) |
| 4 | occon | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
|
| 5 | occon | |- ( ( ( _|_ ` B ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
|
| 6 | 3 4 5 | sylsyld | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |