This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of a relation shifted by A . The set on the right is more commonly notated as ( dom F + A ) (meaning add A to every element of dom F ). (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftdm | |- ( A e. CC -> dom ( F shift A ) = { x e. CC | ( x - A ) e. dom F } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | 1 | shftfval | |- ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 3 | 2 | dmeqd | |- ( A e. CC -> dom ( F shift A ) = dom { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 4 | 19.42v | |- ( E. y ( x e. CC /\ ( x - A ) F y ) <-> ( x e. CC /\ E. y ( x - A ) F y ) ) |
|
| 5 | ovex | |- ( x - A ) e. _V |
|
| 6 | 5 | eldm | |- ( ( x - A ) e. dom F <-> E. y ( x - A ) F y ) |
| 7 | 6 | anbi2i | |- ( ( x e. CC /\ ( x - A ) e. dom F ) <-> ( x e. CC /\ E. y ( x - A ) F y ) ) |
| 8 | 4 7 | bitr4i | |- ( E. y ( x e. CC /\ ( x - A ) F y ) <-> ( x e. CC /\ ( x - A ) e. dom F ) ) |
| 9 | 8 | abbii | |- { x | E. y ( x e. CC /\ ( x - A ) F y ) } = { x | ( x e. CC /\ ( x - A ) e. dom F ) } |
| 10 | dmopab | |- dom { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { x | E. y ( x e. CC /\ ( x - A ) F y ) } |
|
| 11 | df-rab | |- { x e. CC | ( x - A ) e. dom F } = { x | ( x e. CC /\ ( x - A ) e. dom F ) } |
|
| 12 | 9 10 11 | 3eqtr4i | |- dom { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { x e. CC | ( x - A ) e. dom F } |
| 13 | 3 12 | eqtrdi | |- ( A e. CC -> dom ( F shift A ) = { x e. CC | ( x - A ) e. dom F } ) |