This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by GG, 2-Sep-2024)

Ref Expression
Assertion rzal
|- ( A = (/) -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 pm2.21
 |-  ( -. x e. A -> ( x e. A -> ph ) )
2 1 alimi
 |-  ( A. x -. x e. A -> A. x ( x e. A -> ph ) )
3 eq0
 |-  ( A = (/) <-> A. x -. x e. A )
4 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
5 2 3 4 3imtr4i
 |-  ( A = (/) -> A. x e. A ph )