This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgrp0b | |- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgm0b | |- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm |
|
| 2 | ral0 | |- A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | eqid | |- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } = { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } |
|
| 5 | 4 | grpbase | |- ( (/) e. _V -> (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ) |
| 6 | 3 5 | ax-mp | |- (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) |
| 7 | eqid | |- ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) |
|
| 8 | 6 7 | issgrp | |- ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp <-> ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm /\ A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) ) ) |
| 9 | 1 2 8 | mpbir2an | |- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp |