This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmnncl | |- ( ( A e. NN0 /\ B e. NN ) -> ( A sigma B ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 2 | sgmval2 | |- ( ( A e. ZZ /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^ A ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. NN0 /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^ A ) ) |
| 4 | fzfid | |- ( ( A e. NN0 /\ B e. NN ) -> ( 1 ... B ) e. Fin ) |
|
| 5 | dvdsssfz1 | |- ( B e. NN -> { p e. NN | p || B } C_ ( 1 ... B ) ) |
|
| 6 | 5 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> { p e. NN | p || B } C_ ( 1 ... B ) ) |
| 7 | 4 6 | ssfid | |- ( ( A e. NN0 /\ B e. NN ) -> { p e. NN | p || B } e. Fin ) |
| 8 | elrabi | |- ( k e. { p e. NN | p || B } -> k e. NN ) |
|
| 9 | simpl | |- ( ( A e. NN0 /\ B e. NN ) -> A e. NN0 ) |
|
| 10 | nnexpcl | |- ( ( k e. NN /\ A e. NN0 ) -> ( k ^ A ) e. NN ) |
|
| 11 | 8 9 10 | syl2anr | |- ( ( ( A e. NN0 /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> ( k ^ A ) e. NN ) |
| 12 | 11 | nnzd | |- ( ( ( A e. NN0 /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> ( k ^ A ) e. ZZ ) |
| 13 | 7 12 | fsumzcl | |- ( ( A e. NN0 /\ B e. NN ) -> sum_ k e. { p e. NN | p || B } ( k ^ A ) e. ZZ ) |
| 14 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 15 | iddvds | |- ( B e. ZZ -> B || B ) |
|
| 16 | 14 15 | syl | |- ( B e. NN -> B || B ) |
| 17 | breq1 | |- ( p = B -> ( p || B <-> B || B ) ) |
|
| 18 | 17 | rspcev | |- ( ( B e. NN /\ B || B ) -> E. p e. NN p || B ) |
| 19 | 16 18 | mpdan | |- ( B e. NN -> E. p e. NN p || B ) |
| 20 | rabn0 | |- ( { p e. NN | p || B } =/= (/) <-> E. p e. NN p || B ) |
|
| 21 | 19 20 | sylibr | |- ( B e. NN -> { p e. NN | p || B } =/= (/) ) |
| 22 | 21 | adantl | |- ( ( A e. NN0 /\ B e. NN ) -> { p e. NN | p || B } =/= (/) ) |
| 23 | 11 | nnrpd | |- ( ( ( A e. NN0 /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> ( k ^ A ) e. RR+ ) |
| 24 | 7 22 23 | fsumrpcl | |- ( ( A e. NN0 /\ B e. NN ) -> sum_ k e. { p e. NN | p || B } ( k ^ A ) e. RR+ ) |
| 25 | 24 | rpgt0d | |- ( ( A e. NN0 /\ B e. NN ) -> 0 < sum_ k e. { p e. NN | p || B } ( k ^ A ) ) |
| 26 | elnnz | |- ( sum_ k e. { p e. NN | p || B } ( k ^ A ) e. NN <-> ( sum_ k e. { p e. NN | p || B } ( k ^ A ) e. ZZ /\ 0 < sum_ k e. { p e. NN | p || B } ( k ^ A ) ) ) |
|
| 27 | 13 25 26 | sylanbrc | |- ( ( A e. NN0 /\ B e. NN ) -> sum_ k e. { p e. NN | p || B } ( k ^ A ) e. NN ) |
| 28 | 3 27 | eqeltrd | |- ( ( A e. NN0 /\ B e. NN ) -> ( A sigma B ) e. NN ) |