This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the sum of positive divisors function ( x sigma n ) , which is the sum of the xth powers of the positive integer divisors of n, see definition in ApostolNT p. 38. For x = 0 , ( x sigma n ) counts the number of divisors of n , i.e. ( 0 sigma n ) isthe divisor function, see remark in ApostolNT p. 38. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sgm | |- sigma = ( x e. CC , n e. NN |-> sum_ k e. { p e. NN | p || n } ( k ^c x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csgm | |- sigma |
|
| 1 | vx | |- x |
|
| 2 | cc | |- CC |
|
| 3 | vn | |- n |
|
| 4 | cn | |- NN |
|
| 5 | vk | |- k |
|
| 6 | vp | |- p |
|
| 7 | 6 | cv | |- p |
| 8 | cdvds | |- || |
|
| 9 | 3 | cv | |- n |
| 10 | 7 9 8 | wbr | |- p || n |
| 11 | 10 6 4 | crab | |- { p e. NN | p || n } |
| 12 | 5 | cv | |- k |
| 13 | ccxp | |- ^c |
|
| 14 | 1 | cv | |- x |
| 15 | 12 14 13 | co | |- ( k ^c x ) |
| 16 | 11 15 5 | csu | |- sum_ k e. { p e. NN | p || n } ( k ^c x ) |
| 17 | 1 3 2 4 16 | cmpo | |- ( x e. CC , n e. NN |-> sum_ k e. { p e. NN | p || n } ( k ^c x ) ) |
| 18 | 0 17 | wceq | |- sigma = ( x e. CC , n e. NN |-> sum_ k e. { p e. NN | p || n } ( k ^c x ) ) |