This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun is useful for proofs based on isstruct2 which requires Fun ( F \ { (/) } ) for F to be an extensible structure. (Contributed by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsfun0 | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres | |- ( Fun ( G \ { (/) } ) -> Fun ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) ) |
|
| 2 | 1 | adantl | |- ( ( G e. V /\ Fun ( G \ { (/) } ) ) -> Fun ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) ) |
| 3 | 2 | adantr | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> Fun ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) ) |
| 4 | funsng | |- ( ( I e. U /\ E e. W ) -> Fun { <. I , E >. } ) |
|
| 5 | 4 | adantl | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> Fun { <. I , E >. } ) |
| 6 | dmres | |- dom ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) = ( ( _V \ dom { <. I , E >. } ) i^i dom ( G \ { (/) } ) ) |
|
| 7 | 6 | ineq1i | |- ( dom ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) i^i dom { <. I , E >. } ) = ( ( ( _V \ dom { <. I , E >. } ) i^i dom ( G \ { (/) } ) ) i^i dom { <. I , E >. } ) |
| 8 | in32 | |- ( ( ( _V \ dom { <. I , E >. } ) i^i dom ( G \ { (/) } ) ) i^i dom { <. I , E >. } ) = ( ( ( _V \ dom { <. I , E >. } ) i^i dom { <. I , E >. } ) i^i dom ( G \ { (/) } ) ) |
|
| 9 | disjdifr | |- ( ( _V \ dom { <. I , E >. } ) i^i dom { <. I , E >. } ) = (/) |
|
| 10 | 9 | ineq1i | |- ( ( ( _V \ dom { <. I , E >. } ) i^i dom { <. I , E >. } ) i^i dom ( G \ { (/) } ) ) = ( (/) i^i dom ( G \ { (/) } ) ) |
| 11 | 0in | |- ( (/) i^i dom ( G \ { (/) } ) ) = (/) |
|
| 12 | 8 10 11 | 3eqtri | |- ( ( ( _V \ dom { <. I , E >. } ) i^i dom ( G \ { (/) } ) ) i^i dom { <. I , E >. } ) = (/) |
| 13 | 7 12 | eqtri | |- ( dom ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) i^i dom { <. I , E >. } ) = (/) |
| 14 | 13 | a1i | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( dom ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) i^i dom { <. I , E >. } ) = (/) ) |
| 15 | funun | |- ( ( ( Fun ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) /\ Fun { <. I , E >. } ) /\ ( dom ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) i^i dom { <. I , E >. } ) = (/) ) -> Fun ( ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
|
| 16 | 3 5 14 15 | syl21anc | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> Fun ( ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
| 17 | difundir | |- ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) = ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) \ { (/) } ) u. ( { <. I , E >. } \ { (/) } ) ) |
|
| 18 | resdifcom | |- ( ( G |` ( _V \ dom { <. I , E >. } ) ) \ { (/) } ) = ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) |
|
| 19 | 18 | a1i | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( ( G |` ( _V \ dom { <. I , E >. } ) ) \ { (/) } ) = ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) ) |
| 20 | elex | |- ( I e. U -> I e. _V ) |
|
| 21 | elex | |- ( E e. W -> E e. _V ) |
|
| 22 | 20 21 | anim12i | |- ( ( I e. U /\ E e. W ) -> ( I e. _V /\ E e. _V ) ) |
| 23 | opnz | |- ( <. I , E >. =/= (/) <-> ( I e. _V /\ E e. _V ) ) |
|
| 24 | 22 23 | sylibr | |- ( ( I e. U /\ E e. W ) -> <. I , E >. =/= (/) ) |
| 25 | 24 | adantl | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> <. I , E >. =/= (/) ) |
| 26 | disjsn2 | |- ( <. I , E >. =/= (/) -> ( { <. I , E >. } i^i { (/) } ) = (/) ) |
|
| 27 | disjdif2 | |- ( ( { <. I , E >. } i^i { (/) } ) = (/) -> ( { <. I , E >. } \ { (/) } ) = { <. I , E >. } ) |
|
| 28 | 25 26 27 | 3syl | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( { <. I , E >. } \ { (/) } ) = { <. I , E >. } ) |
| 29 | 19 28 | uneq12d | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) \ { (/) } ) u. ( { <. I , E >. } \ { (/) } ) ) = ( ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
| 30 | 17 29 | eqtrid | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) = ( ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
| 31 | 30 | funeqd | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( Fun ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) <-> Fun ( ( ( G \ { (/) } ) |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) ) |
| 32 | 16 31 | mpbird | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> Fun ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) ) |
| 33 | opex | |- <. I , E >. e. _V |
|
| 34 | 33 | a1i | |- ( Fun ( G \ { (/) } ) -> <. I , E >. e. _V ) |
| 35 | setsvalg | |- ( ( G e. V /\ <. I , E >. e. _V ) -> ( G sSet <. I , E >. ) = ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
|
| 36 | 34 35 | sylan2 | |- ( ( G e. V /\ Fun ( G \ { (/) } ) ) -> ( G sSet <. I , E >. ) = ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
| 37 | 36 | difeq1d | |- ( ( G e. V /\ Fun ( G \ { (/) } ) ) -> ( ( G sSet <. I , E >. ) \ { (/) } ) = ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) ) |
| 38 | 37 | funeqd | |- ( ( G e. V /\ Fun ( G \ { (/) } ) ) -> ( Fun ( ( G sSet <. I , E >. ) \ { (/) } ) <-> Fun ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) ) ) |
| 39 | 38 | adantr | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> ( Fun ( ( G sSet <. I , E >. ) \ { (/) } ) <-> Fun ( ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) \ { (/) } ) ) ) |
| 40 | 32 39 | mpbird | |- ( ( ( G e. V /\ Fun ( G \ { (/) } ) ) /\ ( I e. U /\ E e. W ) ) -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |