This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure replacement function does not affect the value of S away from A . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsres | |- ( S e. V -> ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. A , B >. e. _V |
|
| 2 | setsvalg | |- ( ( S e. V /\ <. A , B >. e. _V ) -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ dom { <. A , B >. } ) ) u. { <. A , B >. } ) ) |
|
| 3 | 1 2 | mpan2 | |- ( S e. V -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ dom { <. A , B >. } ) ) u. { <. A , B >. } ) ) |
| 4 | 3 | reseq1d | |- ( S e. V -> ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ dom { <. A , B >. } ) ) u. { <. A , B >. } ) |` ( _V \ { A } ) ) ) |
| 5 | resundir | |- ( ( ( S |` ( _V \ dom { <. A , B >. } ) ) u. { <. A , B >. } ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ dom { <. A , B >. } ) ) |` ( _V \ { A } ) ) u. ( { <. A , B >. } |` ( _V \ { A } ) ) ) |
|
| 6 | dmsnopss | |- dom { <. A , B >. } C_ { A } |
|
| 7 | sscon | |- ( dom { <. A , B >. } C_ { A } -> ( _V \ { A } ) C_ ( _V \ dom { <. A , B >. } ) ) |
|
| 8 | 6 7 | ax-mp | |- ( _V \ { A } ) C_ ( _V \ dom { <. A , B >. } ) |
| 9 | resabs1 | |- ( ( _V \ { A } ) C_ ( _V \ dom { <. A , B >. } ) -> ( ( S |` ( _V \ dom { <. A , B >. } ) ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( S |` ( _V \ dom { <. A , B >. } ) ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) |
| 11 | dmres | |- dom ( { <. A , B >. } |` ( _V \ { A } ) ) = ( ( _V \ { A } ) i^i dom { <. A , B >. } ) |
|
| 12 | disj2 | |- ( ( ( _V \ { A } ) i^i dom { <. A , B >. } ) = (/) <-> ( _V \ { A } ) C_ ( _V \ dom { <. A , B >. } ) ) |
|
| 13 | 8 12 | mpbir | |- ( ( _V \ { A } ) i^i dom { <. A , B >. } ) = (/) |
| 14 | 11 13 | eqtri | |- dom ( { <. A , B >. } |` ( _V \ { A } ) ) = (/) |
| 15 | relres | |- Rel ( { <. A , B >. } |` ( _V \ { A } ) ) |
|
| 16 | reldm0 | |- ( Rel ( { <. A , B >. } |` ( _V \ { A } ) ) -> ( ( { <. A , B >. } |` ( _V \ { A } ) ) = (/) <-> dom ( { <. A , B >. } |` ( _V \ { A } ) ) = (/) ) ) |
|
| 17 | 15 16 | ax-mp | |- ( ( { <. A , B >. } |` ( _V \ { A } ) ) = (/) <-> dom ( { <. A , B >. } |` ( _V \ { A } ) ) = (/) ) |
| 18 | 14 17 | mpbir | |- ( { <. A , B >. } |` ( _V \ { A } ) ) = (/) |
| 19 | 10 18 | uneq12i | |- ( ( ( S |` ( _V \ dom { <. A , B >. } ) ) |` ( _V \ { A } ) ) u. ( { <. A , B >. } |` ( _V \ { A } ) ) ) = ( ( S |` ( _V \ { A } ) ) u. (/) ) |
| 20 | un0 | |- ( ( S |` ( _V \ { A } ) ) u. (/) ) = ( S |` ( _V \ { A } ) ) |
|
| 21 | 19 20 | eqtri | |- ( ( ( S |` ( _V \ dom { <. A , B >. } ) ) |` ( _V \ { A } ) ) u. ( { <. A , B >. } |` ( _V \ { A } ) ) ) = ( S |` ( _V \ { A } ) ) |
| 22 | 5 21 | eqtri | |- ( ( ( S |` ( _V \ dom { <. A , B >. } ) ) u. { <. A , B >. } ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) |
| 23 | 4 22 | eqtrdi | |- ( S e. V -> ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) ) |