This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set (epsilon) induction. Theorem 5.22 of TakeutiZaring p. 21. (Contributed by NM, 17-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setind | |- ( A. x ( x C_ A -> x e. A ) -> A = _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssindif0 | |- ( y C_ A <-> ( y i^i ( _V \ A ) ) = (/) ) |
|
| 2 | sseq1 | |- ( x = y -> ( x C_ A <-> y C_ A ) ) |
|
| 3 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 4 | 2 3 | imbi12d | |- ( x = y -> ( ( x C_ A -> x e. A ) <-> ( y C_ A -> y e. A ) ) ) |
| 5 | 4 | spvv | |- ( A. x ( x C_ A -> x e. A ) -> ( y C_ A -> y e. A ) ) |
| 6 | 1 5 | biimtrrid | |- ( A. x ( x C_ A -> x e. A ) -> ( ( y i^i ( _V \ A ) ) = (/) -> y e. A ) ) |
| 7 | eldifn | |- ( y e. ( _V \ A ) -> -. y e. A ) |
|
| 8 | 6 7 | nsyli | |- ( A. x ( x C_ A -> x e. A ) -> ( y e. ( _V \ A ) -> -. ( y i^i ( _V \ A ) ) = (/) ) ) |
| 9 | 8 | imp | |- ( ( A. x ( x C_ A -> x e. A ) /\ y e. ( _V \ A ) ) -> -. ( y i^i ( _V \ A ) ) = (/) ) |
| 10 | 9 | nrexdv | |- ( A. x ( x C_ A -> x e. A ) -> -. E. y e. ( _V \ A ) ( y i^i ( _V \ A ) ) = (/) ) |
| 11 | zfregs | |- ( ( _V \ A ) =/= (/) -> E. y e. ( _V \ A ) ( y i^i ( _V \ A ) ) = (/) ) |
|
| 12 | 11 | necon1bi | |- ( -. E. y e. ( _V \ A ) ( y i^i ( _V \ A ) ) = (/) -> ( _V \ A ) = (/) ) |
| 13 | 10 12 | syl | |- ( A. x ( x C_ A -> x e. A ) -> ( _V \ A ) = (/) ) |
| 14 | vdif0 | |- ( A = _V <-> ( _V \ A ) = (/) ) |
|
| 15 | 13 14 | sylibr | |- ( A. x ( x C_ A -> x e. A ) -> A = _V ) |