This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqval.1 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) |
|
| Assertion | seqval | |- seq M ( .+ , F ) = ran R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqval.1 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) |
|
| 2 | df-ima | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) = ran ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |` _om ) |
|
| 3 | df-seq | |- seq M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
|
| 4 | eqid | |- _V = _V |
|
| 5 | fvoveq1 | |- ( z = x -> ( F ` ( z + 1 ) ) = ( F ` ( x + 1 ) ) ) |
|
| 6 | 5 | oveq2d | |- ( z = x -> ( w .+ ( F ` ( z + 1 ) ) ) = ( w .+ ( F ` ( x + 1 ) ) ) ) |
| 7 | oveq1 | |- ( w = y -> ( w .+ ( F ` ( x + 1 ) ) ) = ( y .+ ( F ` ( x + 1 ) ) ) ) |
|
| 8 | eqid | |- ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) = ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) |
|
| 9 | ovex | |- ( y .+ ( F ` ( x + 1 ) ) ) e. _V |
|
| 10 | 6 7 8 9 | ovmpo | |- ( ( x e. _V /\ y e. _V ) -> ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) = ( y .+ ( F ` ( x + 1 ) ) ) ) |
| 11 | 10 | el2v | |- ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) = ( y .+ ( F ` ( x + 1 ) ) ) |
| 12 | 11 | opeq2i | |- <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. = <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. |
| 13 | 4 4 12 | mpoeq123i | |- ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) = ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) |
| 14 | rdgeq1 | |- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) = ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) ) |
|
| 15 | 13 14 | ax-mp | |- rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |
| 16 | 15 | reseq1i | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |` _om ) |
| 17 | 1 16 | eqtri | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |` _om ) |
| 18 | 17 | rneqi | |- ran R = ran ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |` _om ) |
| 19 | 2 3 18 | 3eqtr4i | |- seq M ( .+ , F ) = ran R |