This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning the section relation in a category. Given arrows f : X --> Y and g : Y --> X , we say f Sect g , that is, f is a section of g , if g o. f = 1X . If there there is an arrow g with f Sect g , the arrow f is called a section, see definition 7.19 of Adamek p. 106. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sect | |- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csect | |- Sect |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- c |
| 6 | 5 4 | cfv | |- ( Base ` c ) |
| 7 | vy | |- y |
|
| 8 | vf | |- f |
|
| 9 | vg | |- g |
|
| 10 | chom | |- Hom |
|
| 11 | 5 10 | cfv | |- ( Hom ` c ) |
| 12 | vh | |- h |
|
| 13 | 8 | cv | |- f |
| 14 | 3 | cv | |- x |
| 15 | 12 | cv | |- h |
| 16 | 7 | cv | |- y |
| 17 | 14 16 15 | co | |- ( x h y ) |
| 18 | 13 17 | wcel | |- f e. ( x h y ) |
| 19 | 9 | cv | |- g |
| 20 | 16 14 15 | co | |- ( y h x ) |
| 21 | 19 20 | wcel | |- g e. ( y h x ) |
| 22 | 18 21 | wa | |- ( f e. ( x h y ) /\ g e. ( y h x ) ) |
| 23 | 14 16 | cop | |- <. x , y >. |
| 24 | cco | |- comp |
|
| 25 | 5 24 | cfv | |- ( comp ` c ) |
| 26 | 23 14 25 | co | |- ( <. x , y >. ( comp ` c ) x ) |
| 27 | 19 13 26 | co | |- ( g ( <. x , y >. ( comp ` c ) x ) f ) |
| 28 | ccid | |- Id |
|
| 29 | 5 28 | cfv | |- ( Id ` c ) |
| 30 | 14 29 | cfv | |- ( ( Id ` c ) ` x ) |
| 31 | 27 30 | wceq | |- ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) |
| 32 | 22 31 | wa | |- ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) |
| 33 | 32 12 11 | wsbc | |- [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) |
| 34 | 33 8 9 | copab | |- { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } |
| 35 | 3 7 6 6 34 | cmpo | |- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) |
| 36 | 1 2 35 | cmpt | |- ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
| 37 | 0 36 | wceq | |- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |