This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem scheme version of scottex . The collection of all x of minimum rank such that ph ( x ) is true, is a set. (Contributed by NM, 13-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | scottexs | |- { x | ( ph /\ A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | |- F/_ z { x | ph } |
|
| 2 | nfab1 | |- F/_ x { x | ph } |
|
| 3 | nfv | |- F/ x ( rank ` z ) C_ ( rank ` y ) |
|
| 4 | 2 3 | nfralw | |- F/ x A. y e. { x | ph } ( rank ` z ) C_ ( rank ` y ) |
| 5 | nfv | |- F/ z A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) |
|
| 6 | fveq2 | |- ( z = x -> ( rank ` z ) = ( rank ` x ) ) |
|
| 7 | 6 | sseq1d | |- ( z = x -> ( ( rank ` z ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 8 | 7 | ralbidv | |- ( z = x -> ( A. y e. { x | ph } ( rank ` z ) C_ ( rank ` y ) <-> A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) ) ) |
| 9 | 1 2 4 5 8 | cbvrabw | |- { z e. { x | ph } | A. y e. { x | ph } ( rank ` z ) C_ ( rank ` y ) } = { x e. { x | ph } | A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) } |
| 10 | df-rab | |- { x e. { x | ph } | A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) } = { x | ( x e. { x | ph } /\ A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) ) } |
|
| 11 | abid | |- ( x e. { x | ph } <-> ph ) |
|
| 12 | df-ral | |- ( A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) <-> A. y ( y e. { x | ph } -> ( rank ` x ) C_ ( rank ` y ) ) ) |
|
| 13 | df-sbc | |- ( [. y / x ]. ph <-> y e. { x | ph } ) |
|
| 14 | 13 | imbi1i | |- ( ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) <-> ( y e. { x | ph } -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 15 | 14 | albii | |- ( A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) <-> A. y ( y e. { x | ph } -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 16 | 12 15 | bitr4i | |- ( A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) <-> A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 17 | 11 16 | anbi12i | |- ( ( x e. { x | ph } /\ A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) ) <-> ( ph /\ A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) ) ) |
| 18 | 17 | abbii | |- { x | ( x e. { x | ph } /\ A. y e. { x | ph } ( rank ` x ) C_ ( rank ` y ) ) } = { x | ( ph /\ A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
| 19 | 9 10 18 | 3eqtri | |- { z e. { x | ph } | A. y e. { x | ph } ( rank ` z ) C_ ( rank ` y ) } = { x | ( ph /\ A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
| 20 | scottex | |- { z e. { x | ph } | A. y e. { x | ph } ( rank ` z ) C_ ( rank ` y ) } e. _V |
|
| 21 | 19 20 | eqeltrri | |- { x | ( ph /\ A. y ( [. y / x ]. ph -> ( rank ` x ) C_ ( rank ` y ) ) ) } e. _V |