This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbciegft as of 14-May-2025. (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbciegftOLD | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | |- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |
|
| 2 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 3 | 2 | imim2i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) |
| 4 | 3 | impd | |- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A /\ ph ) -> ps ) ) |
| 5 | 4 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ( x = A /\ ph ) -> ps ) ) |
| 6 | 19.23t | |- ( F/ x ps -> ( A. x ( ( x = A /\ ph ) -> ps ) <-> ( E. x ( x = A /\ ph ) -> ps ) ) ) |
|
| 7 | 6 | biimpa | |- ( ( F/ x ps /\ A. x ( ( x = A /\ ph ) -> ps ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) |
| 8 | 5 7 | sylan2 | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) |
| 9 | 8 | 3adant1 | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) |
| 10 | 1 9 | biimtrid | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph -> ps ) ) |
| 11 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
| 12 | 11 | imim2i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) |
| 13 | 12 | com23 | |- ( ( x = A -> ( ph <-> ps ) ) -> ( ps -> ( x = A -> ph ) ) ) |
| 14 | 13 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ps -> ( x = A -> ph ) ) ) |
| 15 | 19.21t | |- ( F/ x ps -> ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) ) |
|
| 16 | 15 | biimpa | |- ( ( F/ x ps /\ A. x ( ps -> ( x = A -> ph ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 17 | 14 16 | sylan2 | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 18 | 17 | 3adant1 | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 19 | sbc6g | |- ( A e. V -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
| 21 | 18 20 | sylibrd | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> [. A / x ]. ph ) ) |
| 22 | 10 21 | impbid | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) ) |