This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf .) (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016) (Proof shortened by SN, 14-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbciegft | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc6g | |- ( A e. V -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
| 3 | ceqsalt | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
|
| 4 | 3 | 3comr | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| 5 | 2 4 | bitrd | |- ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) ) |