This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbciegft as of 14-May-2025. (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbciegftOLD | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) | |
| 2 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 3 | 2 | imim2i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
| 4 | 3 | impd | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 6 | 19.23t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) ) | |
| 7 | 6 | biimpa | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 8 | 5 7 | sylan2 | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 10 | 1 9 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜓 ) ) |
| 11 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
| 12 | 11 | imim2i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 13 | 12 | com23 | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 14 | 13 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 15 | 19.21t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) | |
| 16 | 15 | biimpa | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 17 | 14 16 | sylan2 | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 19 | sbc6g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 21 | 18 20 | sylibrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 22 | 10 21 | impbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |